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a b s t r a c t 

The accurate diagnosis of Alzheimer’s disease (AD) and its early stage, e.g., mild cognitive impairment 

(MCI), is essential for timely treatment or possible intervention to slow down AD progression. Recent 

studies have demonstrated that multiple neuroimaging and biological measures contain complemen- 

tary information for diagnosis and prognosis. Therefore, information fusion strategies with multi-modal 

neuroimaging data, such as voxel-based measures extracted from structural MRI (VBM-MRI) and fluo- 

rodeoxyglucose positron emission tomography (FDG-PET), have shown their effectiveness for AD diag- 

nosis. However, most existing methods are proposed to simply integrate the multi-modal data, but do 

not make full use of structure information across the different modalities. In this paper, we propose 

a novel multi-modal neuroimaging feature selection method with consistent metric constraint (MFCC) 

for AD analysis. First, the similarity is calculated for each modality (i.e. VBM-MRI or FDG-PET) individ- 

ually by random forest strategy, which can extract pairwise similarity measures for multiple modalities. 

Then the group sparsity regularization term and the sample similarity constraint regularization term are 

used to constrain the objective function to conduct feature selection from multiple modalities. Finally, 

the multi-kernel support vector machine (MK-SVM) is used to fuse the features selected from differ- 

ent models for final classification. The experimental results on the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) show that the proposed method has better classification performance than the start- 

of-the-art multimodality-based methods. Specifically, we achieved higher accuracy and area under the 

curve (AUC) for AD versus normal controls (NC), MCI versus NC, and MCI converters (MCI-C) versus MCI 

non-converters (MCI-NC) on ADNI datasets. Therefore, the proposed model not only outperforms the tra- 

ditional method in terms of AD/MCI classification, but also discovers the characteristics associated with 

the disease, demonstrating its promise for improving disease-related mechanistic understanding. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

In recent years, the incidence of brain diseases worldwide has

een rising. Alzheimer’s disease (AD) is one of the most common

rain diseases, and its clinical manifestations are mainly mem-

ry impairment and loss of reasoning cognitive ability, accompa-

ied by language and movement disorders. At present, AD has be-

ome the fifth leading cause of death in the elderly. In a 2018

eport from the Alzheimer’s Association of the United States, Na-
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ional Center for Health Statistics has shown the statistics infor-

ation on the rate of change in mortality from multiple risky dis-

ases in the United States. That is, between 20 0 0 and 2015, the

umber of lethal deaths of many risk diseases has achieved neg-

tive growth, while the incidence of AD has increased by 123%

 Alzheimer’s Association, 2018 ). According to another survey re-

ort ( Alzheimer’s Association, 2017 ), one case of Alzheimer’s dis-

ase will be diagnosed every 33 seconds in 2050, with nearly one

illion new cases each year. AD has become one of the major dis-

ases that endanger the health of the elderly and affect the sus-

ainable development of society. However, the efficacy of drugs for

he treatment of AD has been limited to date, and no treatment

as been reported to reverse or prevent the progression of AD. 

https://doi.org/10.1016/j.media.2019.101625
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2019.101625&domain=pdf
mailto:gyc@scse.hebut.edu.cn
mailto:dqzhang@nuaa.edu.cn
mailto:Li.Shen@pennmedicine.upenn.edu
https://doi.org/10.1016/j.media.2019.101625
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Therefore, the measurement of sensitive markers in the early

stages of the disease can help researchers and clinicians develop

new treatments and test their effectiveness. Recently, various mea-

surements such as structural atrophy, pathological amyloid deposi-

tion, and metabolic changes have already been shown to be sen-

sitive to the diagnosis of AD and MCI. Neuroimaging techniques

( Rathore et al., 2017 ; Sui et al., 2012 ; Ye et al., 2011 ) provide

great help for the discovery of AD-related brain regions of in-

terest (ROIs), which is a powerful instrument for the diagnosis

of neurodegenerative diseases. For example, voxel-based measures

extracted from structural MRI (VBM-MRI) and fluorodeoxyglucose

positron emission tomography (FDG-PET), have been shown to be

useful for investigating the neurophysiological features of AD and

mild cognitive impairment (MCI) ( Chetelat et al., 2003 ; Cohen and

Klunk, 2014 ; Foster et al., 2007 ; Zhang et al., 2015 ). 

In recent decades, machine learning and pattern recognition

methods, including sparse learning, graph theory, and classifica-

tion, have been widely used in neuroimaging analysis for AD

and MCI diagnosis ( Lei et al., 2017 ; Sanz-Arigita et al., 2010 ;

Wang et al., 2018 ; Ye et al., 2011 ). However, some existing stud-

ies focus on extracting features from a single modality. For ex-

ample, the researchers extracted some features from certain ROI,

such as the hippocampus on structural MRI ( Frisoni et al., 2010 ) for

the classification of AD ( Gerardin et al., 2009 ; Wang et al., 2006 ).

While in addition to structural MRI, PET images can also be used

for classification of AD and MCI ( Chetelat et al., 2003 ; Cohen and

Klunk, 2014 ; Foster et al., 2007 ; Hinrichs et al., 2009 ). 

As the brain has very complex structure and function, acquir-

ing data from single modality does not provide sufficient fea-

ture information for diagnosis. In recent years, with the develop-

ment of neuroimaging technology, multi-modal data can be col-

lected during various examinations of subjects, providing a source

of data for the diagnosis of AD. Different modality data can provide

brain information from different perspectives. For example, struc-

tural MRI provides information related to brain tissue types, while

PET measures glucose brain metabolic rate. Numerous studies have

shown that ( Ahmed et al., 2017 ; Gray et al., 2013 ; Lei et al., 2017 ;

Liu et al., 2015b ; Teipel et al., 2015 ; Tong et al., 2017 ; Zhang et al.,

2011 ; Zhu et al., 2015 ) a variety of neuroimaging data can provide

complementary information, and the information fusion from dif-

ferent modalities can enhance diagnostic performance. Therefore,

the accuracy of using multi-modal data for AD diagnosis is better

than that of single modality. For example, Zhang et al. (2011 ) and

Liu et al. (2015b ) used two modal data (including MRI and PET)

for AD diagnosis. Lei et al. (2017 ) used MRI, PET and cerebrospinal

fluid (CSF) for regression and classification of AD. Tong et al. (2017 )

used MRI, PET, CSF and genes for AD/MCI classification. 

Although the current AD diagnostic methods involved with

multi-modal data have good effects, there are still some prob-

lems that may limit the classification performance. When we ex-

tract features from neuroimaging, there are a lot of redundancy

or unrelated features, which will lead to poor classification perfor-

mance. Therefore, how to remove redundant or unrelated features

is a very important step in AD diagnosis. At this stage, there are

some feature selection methods to detect the brain features asso-

ciated with AD. For example, Liu et al. (2016a , 2015a ) used the hi-

erarchical relationship between different template data to establish

a structurally constrained integrated learning AD diagnostic pre-

diction model. Peng et al. (2018 ) used l 1, p -norm to construct the

sparsity-constrained objective function and projected it into a new

space for AD diagnosis classification. Zhu et al. (2015 ) combined

two subspace learning methods, namely linear discriminant analy-

sis and the projection is locally maintained to select features in the

brain image. Jie et al. (2015 ) proposed a manifold regularization

multi-task feature learning method, which uses multi-task learn-

ing and manifold-based Laplacian regularization to maintain the
ntrinsic correlation between multiple modal data, thereby adding

ore discriminative features. Zu et al. (2016 ) proposed a label-

ligned multi-task feature learning method which adds a new

abel-aligned regularization term to the objective function of stan-

ard multi-task feature selection to ensure that all multi-modal

ubjects with the same class labels should be close in the new

eature-reduced space. 

However, one drawback of existing methods is that they do not

ake full advantage of the similarity relationships between samples.

his relationship is a significant prior knowledge, because there are

ertain differences and commonalities between samples, and it is

mportant to make rational use of this information. In many prac-

ical problems, it is critical to represent structural information be-

ween samples consistently. As the data types of different modal-

ties are different, if the complex relationship between samples is

xpressed by Euclidean distance or other simple metrics, the struc-

ure or topology information will be lost. In simple terms, a rea-

onable representation of the complex relationship between sam-

les facilitates the selection of more distinguishing features and

urther improves subsequent classification performance. In many

pplications, researchers have used a similarity matrix generated

y random forests ( Breiman, 2001 ) to represent complex relation-

hips between samples. For example, Tong et al. (2017 ) constructed

 graph using a similarity matrix and then merged the multi-

odal data using a graph fusion method. Gray et al. (2013 ) used

he similarity between samples to construct a manifold learning

odel and then used random forests for classification. Here, we

se the random forest approach to provide similarity measures for

ulti-modal data. 

In this paper, we propose a novel multi-modal neuroimag-

ng feature selection method with consistent metric constraint

MFCC). The unique loss function is designed to include a regu-

arization term based on the similarity of multi-modal samples,

hich clearly shows that the samples have a similarity relation-

hip in each modality. Specifically, our proposed method consists

f three steps: (1) calculating the similarity between samples, (2)

ulti-modal feature learning based on sample consistency metrics,

nd (3) multi-modal fusion and classification. We first construct

 similarity matrix for each modality through a random forest,

eflecting the similarity relationship between the samples. Then

e treat feature learning in each modality as a single learning

ask and transform multi-modal classification tasks into multi-task

earning (MTL) problems. MTL uses the correlation between tasks

o learn multiple tasks and integrate information for each task,

hus enhancing single-task learning performance. Specifically, we

ntroduce a l 2, 1 -norm for joint selection features, which can en-

ure that different morphological features of the same brain region

ill be selected in different modalities. We then add regularization

erms based on sample similarity to the standard multi-task ob-

ective function. Finally, we use a multi-kernel support vector ma-

hine (MK-SVM) to fuse the selected features for final classification.

n order to verify the proposed method, we conduct experimen-

al verification on ADNI-1 and ADNI-2 datasets. The results show

hat our proposed method is more accurate than the start-of-the-

rt methods. 

. Materials and workflow 

.1. Datasets 

In this study, we performed experimental validation using the

lzheimer’s Disease Neuroimaging Initiative (ADNI) datasets. ADNI

as launched in 2003 by the National Institute on Aging, the

ational Institute of Biomedical Imaging and Bioengineering, the

ood and Drug Administration, private pharmaceutical companies

nd non-profit organizations, with a $60 million five-year public-
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Table 1 

Demographic characteristics of the subjects in ADNI-1 dataset. 

Subjects AD NC MCI-C MCI-NC 

Number 51 52 43 56 

Gender (M/F) 33/18 34/18 28/15 39/17 

Age 75.2 ±7.4 75.3 ±5.2 75.8 ±6.8 74.7 ±7.7 

Education 14.7 ±3.6 15.8 ±3.2 16.1 ±2.6 16.1 ±3.0 

MMSE 23.8 ±2.0 29.0 ±1.2 26.6 ±1.7 27.5 ±1.5 

CDR 0.7 ±0.3 0.0 ±0.0 0.5 ±0.0 0.5 ±0.0 

The values are denoted as mean ± standard deviation. MMSE = Mini-Mental State 

Examination, CDR = clinical dementia score, AD = Alzheimer’s disease, NC = Normal 

Control, MCI-C = Mild Cognitive Impairment conversion, MCI-NC = Mild Cognitive Im- 

pairment non-transformation. 

Table 2 

Demographic characteristics of the subjects in ADNI-2 dataset. 

Subjects NC SMC EMCI LMCI AD 

Number 211 82 273 187 160 

Gender (M/F) 190/101 33/49 153/119 108/79 95/65 

Age 76.1 ±6.5 72.5 ±5.7 71.5 ±7.1 73.9 ±8.4 75.18 ±7.9 

Education 16.4 ±2.6 16.8 ±2.7 16.1 ±2.6 16.4 ±2.8 15.86 ±2.8 

MMSE 29.0 ±1.2 29.0 ±1.2 28.4 ±1.5 27.7 ±1.7 24.0 ±2.6 

CDR 0.0 ±0.1 0.0 ±0.0 0.5 ±0.1 0.5 ±0.1 0.7 ±0.3 

The values are denoted as mean ± standard deviation. NC = Normal Con- 

trol, SMC = Significant Memory Concern, EMCI = Early Mild Cognitive Impairment, 

LMCI = Late Mild Cognitive Impairment, AD = Alzheimer’s disease. 
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rivate partnership. 202 subjects with VBM-MRI and FDG-PET

rain imaging in ADNI-1 were used herein, including 51 AD sub-

ects, 52 NC and 99 MCI subjects. 99 MCI patients can be further

ivided into two types, including 43 MCI converters and 56 MCI

on-converters. In particular, MCI converters (MCI-C) will develop

nto AD patients within 18 months, while MCI non-converters

MCI-NC) will remain in its original state. Table 1 lists the demo-

raphic characteristics of subjects in the ADNI-1 dataset. 

At the same time, we also analyzed the updated dataset ADNI-

. The ADNI-2 assessed participants from the ADNI-1 phases in ad-

ition to new participant groups (including elderly controls, sig-

ificant memory concern (SMC), early mild cognitive impairment

EMCI) subjects, late mild cognitive impairment (LMCI) subjects,

nd AD patients) in 2011 ( http://adni.loni.usc.edu/about/ ). Com-

ared to the ADNI-1 dataset, the ADNI-2 dataset divides MCI into

hree subtypes, including SMC, EMCI, and LMCI. 

The diagnostic criteria for ADNI-1 and ADNI-2 are consistent.

iagnosis was made using the standard criteria described in the

DNI-2 procedures manual ( http://www.adni-info.org ). Briefly, NC

articipants had no subjective or informant-based complaint of

emory decline and normal cognitive performance. SMC partici-

ants had subjective memory concerns as assessed using the Cog-

itive Change Index (CCI; total score from first 12 items > 16), no

nformant-based complaint of memory impairment or decline, and

ormal cognitive performance on the Wechsler Logical Memory

elayed Recall (LM-delayed) and the Mini-Mental State Examina-

ion (MMSE) ( Risacher et al., 2015 ); EMCI participants had a mem-

ry concern reported by the subject, informant, clinician, abnor-

al memory function approximately 1 standard deviation below

ormative performance adjusted for education level on the LM-

elayed, an MMSE total score greater than 24;Besides a subjective

emory concern as reported by subject, study partner or clini-

ian, Clinical Dementia Rating (CDR) on LMCI subjects was 0.5 and

emory Box (MB) score must be at least 0.5; MMSE score on AD

hould be between 20 and 26 and CDR should be 0.5 or 1.0. 

The ADNI-2 dataset includes VBM-MRI and FDG-PET scans from

13 subjects, including 160 AD, 82 SMC, 460 MCI and 211 NC

articipants. 460 MCI patients have two phases: EMCI and LMCI.
able 2 lists the demographic characteristics of subjects in the

DNI-2 dataset. 

In our work, we perform image preprocessing on VBM-MRI

nd FDG-PET in the ADNI-1 dataset. First, the anterior commissure

AC)-posterior commissure (PC) correlation is implemented on all

mages, and then the N3 algorithm ( Sled et al., 1998 ) is used to

orrect the intensity inhomogeneity. Next, we combine brain sur-

ace extractor (BSE) ( Shattuck et al., 2001 ) and brain extraction tool

BET) ( Smith, 2002 ) to perform skull stripping on structural MR

mages. The skull stripping results are further manually performed

o ensure the skull clean. After removal of the cerebellum, FM-

IB’s Automated Segmentation Tool (FAST) in the FMRIB’s Segmen-

ation Library (FSL) package ( Zhang et al., 2001 ) is used to segment

he structural MR images into three different tissues: gray matter

GM), white matter (WM) and cerebrospinal fluid (CSF). Later, we

se 4D (hierarchical attribute matching mechanism for elastic reg-

stration) HAMMER ( Shen et al., 2003 ), a fully automated 4D map

arping method that obtain images of subject markers based on a

emplate with 93 manually labeled ROIs ( Kabani et al., 1998 ). All

mages based on the 93 labeled ROIs in the template can then be

agged. For each of the 93 ROIs in the labeled MR image, we cal-

ulate the volume of the GM as a feature. For FDG-PET, we first

lign them with the corresponding MR images of the same object

sing a rigid transformation and then calculate the average inten-

ity of each ROI region in the FDG-PET image as a feature. Finally,

or each sample, we totally obtain 93 features from the VBM-MRI

mage, and another 93 features from the FDG-PET image. 

For the ADNI-2 dataset, we align the preprocessed multi-modal

mage data (VBM-MRI, FDG-PET) with the same visit scan. Then,

n the standard Montreal Institute of Neurology (MNI) space, as a

 × 2 × 2 mm 

3 voxel, we create normalized gray matter density

aps from MRI data, and register the FDG-PET scans into the same

pace by the Statistical Parametric Mapping (SPM) software pack-

ge ( Tzourio-Mazoyer et al., 2002 ) . Based on the MarsBaR anatom-

cal automatic labeling (AAL) map ( Ashburner and Friston, 20 0 0 ),

he average gray matter density is measured at 116 ROI levels. The

DG-PET glucose utilization rate and ROIs volume were further ex-

racted. After removal of the cerebellum, imaging measurements

f each modality (VBM-MRI, FDG-PET) with 90 ROIs are used as

uantitative traits in our experiments. 

.2. Analysis workflow 

Fig. 1 illustrates the framework of AD versus NC identification,

ncluding four steps: data preprocessing, feature extraction, feature

election and classification. The innovation of this method is to

ake full use of the global structure information of the data and

ncorporate the similarity-metric constraint between samples. 

. Method 

We hypothesize that there is a similarity structure among sam-

les in an AD study, and we can map this relationship into the

orm of a graph. In the constructed graph, the vertices are used to

epresent the samples, the distance between the samples is used

o represent the edge. Thus, the graph is undirected, and the asso-

iated matrix of the graph is symmetrical. 

However, when solving multi-modal problems with more com-

lex sample relationships, it is more significant to find appropriate

nter-sample measurements. If we cannot find a reasonable way to

easure multi-modal data, it will lead to inconsistent weights be-

ween modalities. In this paper, we want to utilize the random for-

st method to measure the relationship between samples, which

as been widely used in various applications. 

http://adni.loni.usc.edu/about/
http://www.adni-info.org
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Fig. 1. The workflow of AD/MCI versus NC identification. The framework comprises four steps: data preprocessing, feature extraction, feature selection and classification. 

First, VBM-MRI and FDG-PET scans are acquired and preprocessed under the pipeline, and the features are extracted from brain ROIs using template. Then the features are 

selected by the proposed method in this paper, and finally we make predictions using MK-SVM classifier. 
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3.1. Graph for similarity learning 

We calculate the distance between samples and convert it (i.e.

dissimilarity) to a similarity measurement. Suppose we have n

samples, each with s modalities, and d features extracted from

each modality. When we calculate the similarity using the fea-

tures from the v -th modality, we can construct graph G 

v = ( V v , E v )

to describe the relationship between the n samples of the v -th

modality, where the set V 

v of vertices correspond to n samples of

the v -th modality, the set E v of edges capture the pairwise similar-

ity measures among n samples. At this time, we use the adjacency

matrix L v with weight and sizes of n × n to represent the similarity

between samples, where L v ( a, b ) is used to represent the similar-

ity between sample a and sample b from the v -th modality. The

similarity matrix L v can be calculated in different ways. A common

method is to calculate the distance between a pair of samples us-

ing the Euclidean distance and normalize it to form the similarity

matrix. 

Random forests can extract pairs of similarity measures for

multiple forms, and random forests provide a consistent way of

combining different types of feature data. For example, the simi-

larity derived from random forests has been successfully applied

to tumor clustering tasks ( Shi and Horvath, 2006 ). To calculate the

similarity between sample a and sample b using a random forest,

the measurements of the two samples are passed under each tree

in the forest. The similarity L v ( a, b ) is initialized to zero. If sam-

ple a and sample b are at the same end node of the tree, their

similarity L v ( a, b ) increases by 1. The final similarity matrix is nor-

malized by dividing L v by the total number of trees in the forest.

Therefore, the diagonal elements of the similarity matrix L v are

equal to one, and the other elements are all numbers greater than

zero and less than one. Here we use the random forest MATLAB

toolbox ( Breiman, 2006 ) to achieve sample similarity calculations. 

Fig. 2 shows an example of a similarity matrix for different

modalities. As we can see, charts built with different data types
 a  

Fig. 2. Sample similarit
how very different connection patterns, which can provide com-

lementary information for AD versus NC classification. 

.2. Construct equations 

The essential of the multi-task learning ( Caruana, 1997 ) is to

olve several related tasks at the same time and use the related in-

ormation across multiple tasks to improve the performance of the

odels. In recent years, multi-task learning has been widely used

n many fields, including image classification ( Luo et al., 2013 ), text

lassification ( Liu et al., 2016b ), bioinformatics ( Xu and Yang, 2011 ),

nd so on. 

In this study, single modal neuroimaging feature selection and

lassification can be considered as a single task. Suppose we have s

earning tasks (i.e., s modal). X 

v = [ x v 1 , x 
v 
2 , . . . . . . , x 

v 
N ] 

T ∈ R N×d is rep-

esented as the training data matrix in the v -th task (i.e., the v -th

odal), where x v 
i 

represents the feature column vector of the v -th

ask of the corresponding i -th sample, d is the dimension of the

eature, and N is the sample quantity. Let Y = [ y 1 , y 2 , . . . . . . , y N ] 
T ∈

 

N be the corresponding label vector for N samples. The value of

 i is 1 or −1 (i.e., patient or normal control). It is worth noting

hat the labels of different morphologies from the same sample

re identical. We use a linear function to fit the class label, so the

bjective function of the multi-task feature selection model is as

ollows ( Argyriou et al., 2008 ): 

in 

w 

1 

2 

N ∑ 

i =1 

s ∑ 

v =1 

(
y i − x v 

T 

i w 

v 
)2 + λ‖ 

W ‖ 2 , 1 (1)

We can write the variables in Eq. (1) as vectors, and the formula

s as follows: 

in 

w 

1 

2 

s ∑ 

v =1 

‖ Y − X 

v w 

v ‖ 

2 

2 

+ λ ‖ W ‖ 2 , 1 (2)

here w 

v ∈ R d is the vector of the regression coefficients associ-

ted with the v -th modality. All s modal vectors form a weight ma-
y matrix display. 
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rix W = [ w 

1 , w 

2 , . . . , w 

s ] ∈ R d×s . In Eq. (2) , W 2, 1 is the l 2, 1 -norm of

he matrix W, which is defined as follows: W 2 , 1 = 

∑ d 
i =1 w 

i 
2 , where

he superscript i of w 

i corresponds to the i -th row of the matrix W,

nd its function is to combine multiple modalities. The constraint

f l 2, 1 -norm encourages most of the feature weight coefficients to

e zero, and only a small number of feature weight coefficients

re non-zero. These non-zero features are the shared features of

ll tasks. In particular, the optimal solution will assign a relatively

arge weight to the feature providing the classification information,

nd assign zero or small weight to the feature that does not pro-

ide the classification information or provides less information. For

eature selection, only those features with non-zero weights are re-

ained. In other words, the specification combines multiple tasks

nd ensures that a small number of common features can be se-

ected together across different tasks, taking into account the cor-

elation between different tasks. The parameter λ before the l 2, 1 -

orm is the coefficient of the regularization term, which is used

o control the relative weight of the two items. It is worth not-

ng that when only one task (i.e., feature selection on single modal

rain image data) is learned, the loss term Y − Xw 

2 
2 

is represented

s the single task and the l 2, 1 -norm is degenerated into l 1 -norm.

hus, Eq. (2) will also degenerate to the least absolute shrinkage

nd selection operator (LASSO) model ( Tibshirani, 2011 ). 

Based on the sample similarity matrix, we define the sample

imilarity regularization as follows: 

= w 

T X 

T LX w (3) 

Intuitively, we want to preserve the global structural informa-

ion of the data in the original feature space and represent it us-

ng a similarity matrix generated by random forest. We construct a

imilarity matrix in each modality to represent the structure of the

ear and far relation of the data. So we can define the multi-modal

eature selection objective function based on sample similarity as

ollows: 

min 

W 

1 

2 

s ∑ 

v =1 

‖ Y − X 

v w 

v ‖ 

2 

2 

+ λ ‖ W ‖ 2 , 1 

+ 

s ∑ 

v =1 

σ v 
(
X 

v w 

v 
)T 

L v 
(
X 

v w 

v 
)

(4) 

here W = [ w 

1 , w 

2 ], s = 2 . L v is the sample similarity matrix of the

 -th modality. The first term in Eq. (4) is the empirical error on the

raining set calculated by the least squares method, and the sec-

nd term is the l 2, 1 -norm, the regularization parameter λ controls

he group sparsity in the solution. The last term is the similarity

egularization constraint, and σ v is the regularization parameter to

alance the penalties from different modalities. 

In our model, using the multi-tasking or multimodal correla-

ion, we can not only jointly select the shared features from dif-

erent modalities, but also preserve the similarity information be-

ween samples in each modality by adding sample similarity regu-

arization terms. The existing multi-modal feature selection algo-

ithm only considers the pairwise relationship between samples

r only considers the information between several points in the

icinity of the sample, only uses local information and ignores the

lobal similarity relationship between the sample sets as a whole. 

.3. Optimization 

As the objective function is not-differentiable and not smooth,

here is no way to calculate the gradient of some points of the

bjective function, so the equation cannot be solved by the gradi-

nt descent method. At this stage, there are many ways to solve

he objective function formula (4) , such as Alternating Direction

ethod of Multipliers (ADMM) and Accelerated Proximal Gradient
APG) ( Chen et al., 2009 ). In this paper, we use the APG algorithm

o solve our problem. 

First, we divide the Eq. (4) into smooth terms f 1 (W) and non-

mooth terms f 2 (W): 

f 1 ( W ) = 

1 

2 

s ∑ 

v =1 

‖ Y − X 

v w 

v ‖ 

2 

2 

+ 

s ∑ 

v =1 

σ v 
(
X 

v w 

v 
)T 

L v 
(
X 

v w 

v 
)

(5) 

f 2 ( W ) = λ ‖ W ‖ 2 , 1 (6) 

Then we use formula (7) to approximate f 1 (W) + f 2 (W) : 

 αt 

(
W , W 

(t) 
)

= f 1 
(
W 

(t) 
)

+ 

〈
W − W 

(t) , ∇ f 1 
(
W 

(t) 
)〉

+ 

l 

2 

‖ W − W 

(t) ‖ 

2 
F + f 2 (W) . (7) 

here 〈 X 1 , X 2 〉 represents the trace of the matrix X 1 
T X 2 , · ‖ · ‖ F is

he Frobenius norm, ∇f 1 (W 

( t ) ) is the gradient of f 1 (W) at point W 

( t ) 

f the t -th iteration, and αt is the step factor of the t -th iteration,

he value of which is obtained by linear search. The update step

or the APG algorithm is as follows: 

 

(t+1) = arg min 
W 

(
1 

2 
‖ W −

(
W 

(t) − 1 

αt 
∇ f 1 ( W 

(t) ) 
)

‖ 2 F + 

1 

αt 
f 2 (W) 

)
(8) 

And the update step can be solved by formula (9) : 

 

(t) = W 

(t) + 

1 − γt−1 

γt−1 

γt 

(
W 

(t) − W 

(t−1) 
)

(9) 

here γt = 

2 
2+ t , and the convergence speed of this algorithm is

 ( 1 
T 2 

) , T is the maximum number of iterations of the calculation. 

.4. Classification 

We use the MK-SVM ( Zhang et al., 2011 ) to classify the data af-

er feature selection. The prior studies have shown that MK-SVM

as a good classification performance for multi-modal data. Given

 training set, the kernel function of the v -th modal is k v (x v 
i 
, x v 

j 
) =

v ( x v 
i 
) T φv ( x v 

j 
) . We use linear kernels to fuse multi-modal data

ith a kernel function of k v ( x i , x j ) = 

∑ s 
v =1 β

v k v (x v 
i 
, x v 

j 
) , where βv 

s the weight coefficient of the v -th modality. The dual form of the

K-SVM is as follows: 

max 
α

N ∑ 

i =1 

αi −
1 

2 

∑ 

i, j 

αi α j y i y j 

s ∑ 

v =1 

βv k v 
(
x v i , x 

v 
j 

)

s . t . 

N ∑ 

i =1 

αi y i = 0 , 

αi ≥ 0 , i = 1 , 2 , . . . , N (10) 

here α is a Lagrange multiplier. In this paper, the SVM classifier

an be solved by using LIBSVM toolbox ( Chang and Lin, 2011 ). We

nd the optimal value of βv by cross-validation on the training set

y grid search in the range of [0,1]. 

.5. Performance evaluation 

Cross-validation is a commonly used method in machine learn-

ng to build models and validate model parameters. As the num-

er of subjects is limited, cross-validation is to reuse data to eval-

ate the quality of model prediction. In this study, we used 10-fold

ross-validation that could reduce the bias by averaging the re-

ults of different group testing. Specifically, we divided the dataset

nto 10 parts. In each cross-validation experiments, we took nine

f them as a training set and one as a test set, so that we per-

ormed 10 experiments independently, eliminating errors caused

y random division. We used MRI and PET brain image data from
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Table 3 

Classification performance of different methods on ADNI-1. 

(a) AD versus NC 

Method ACC SEN SPE AUC P -value 

Baseline-SVM 89.35 ± 8.83 90.39 88.27 0.94 < 0.001 

LASSO-SVM 87.57 ± 9.12 89.02 86.15 0.95 < 0.001 

t -test-SVM 86.75 ± 10.33 83.92 89.42 0.93 < 0.001 

Baseline-MK-SVM 94.53 ± 6.55 94.90 94.04 0.96 < 0.001 

LASSO-MK-SVM 93.74 ± 7.81 95.00 91.60 0.97 < 0.001 

t -test-MK-SVM 93.45 ± 7.35 94.90 91.92 0.96 < 0.001 

Group Lasso-MK-SVM 94.53 ± 6.80 94.90 94.04 0.96 < 0.001 

Euclid-MK-SVM 95.08 ± 6.77 97.25 92.88 0.97 0.004 

Hypergraph-MK-SVM 94.77 ± 6.39 97.25 92.31 0.97 < 0.001 

MFCC-MK-SVM 97.60 ± 5.03 98.43 96.73 0.98 –

(b) MCI versus NC 

Method ACC SEN SPE AUC P -value 

Baseline-SVM 70.75 ± 10.04 79.80 53.46 0.76 < 0.001 

LASSO-SVM 72.46 ± 11.05 83.03 52.31 0.78 < 0.001 

t -test-SVM 72.79 ± 9.53 85.96 47.69 0.77 < 0.001 

Baseline-MK-SVM 80.09 ± 8.24 87.47 65.96 0.79 < 0.001 

LASSO-MK-SVM 81.89 ± 8.89 90.24 62.27 0.79 0.022 

t -test-MK-SVM 81.71 ± 9.43 91.82 62.31 0.79 0.019 

Group Lasso-MK-SVM 79.76 ± 6.91 95.76 49.23 0.77 < 0.001 

Euclid-MK-SVM 81.48 ± 8.48 89.49 66.15 0.80 0.007 

Hypergraph-MK-SVM 81.20 ± 6.55 94.14 56.54 0.75 < 0.001 

MFCC-MK-SVM 84.47 ± 6.83 94.04 66.15 0.81 –

(c) MCI-C versus MCI-NC 

Method ACC SEN SPE AUC P -value 

Baseline-SVM 53.95 ± 15.12 44.65 61.07 0.59 < 0.001 

LASSO-SVM 54.57 ± 14.87 45.12 61.79 0.60 < 0.001 

t -test-SVM 50.76 ± 13.74 34.42 63.39 0.57 < 0.001 

Baseline-MK-SVM 69.17 ± 12.77 57.44 78.04 0.66 < 0.001 

LASSO-MK-SVM 71.88 ± 13.36 61.97 76.00 0.66 < 0.001 

t -test-MK-SVM 63.05 ± 12.60 50.70 72.32 0.59 < 0.001 

Group Lasso-MK-SVM 70.86 ± 11.37 62.33 77.14 0.65 < 0.001 

Euclid-MK-SVM 72.00 ± 12.97 69.77 73.57 0.70 < 0.001 

Hypergraph-MK-SVM 73.64 ± 11.19 66.28 79.11 0.74 0.008 

MFCC-MK-SVM 77.76 ± 10.59 67.44 85.54 0.76 –

a  

a

 

fi  

T  

d  

d  

W  

t  
ADNI-1 to verify the model in three sets of comparison experi-

ments, including AD vs. NC, MCI vs. NC, and MCI-C vs. MCI-NC.

Three sets of comparative experiments, including AD vs. NC, LMCI

vs. NC, and EMCI vs. LMCI were also performed on the same model

using ADNI-2 dataset. We used accuracy (ACC), sensitivity (SEN),

specificity (SPE), the area under the curve (AUC), p -value and ROC

curve as evaluation indicators. 

Our proposed multi-modal neuroimaging feature selection with

consistent metric constraint (denoted as MFCC) method is com-

pared with several existing popular methods, including directly

concatenating the features of MRI and PET into a vector and

using the SVM classification, involving (1) methods without

feature selection (denote as Baseline-SVM), (2) LASSO method

( Tibshirani, 2011 ) (denote as LASSO-SVM), and (3) t -test method,

the p -value significance threshold of the t-test is chosen to

be 0.05. We also comprise the following multi-kernel methods

( Zhang et al., 2011 ) (denote as t -test-SVM), (1) the multi-kernel

method without feature selection (denoted as Baseline-MK-SVM),

(2) LASSO-based ( Tibshirani, 2011 ) multi-kernel method (denoted

as LASSO-MK-SVM), and (3) multi-kernel method based on t -test

(denoted as t- test-MK-SVM). It is classified using an SVM with a

linear kernel. We also compare the feature selection method with

the l 2, 1 -norm (denoted as Group Lasso-MK-SVM), the similarity

matrix by the Euclidean distance calculation (denoted as Euclid-

MK-SVM) and the hypergraph strategy (denoted as Hypergraph-

MK-SVM). For model selection, the regularization parameters of all

methods are selected from the range of { 10 −9 
, 10 −8 

, . . . . . . , 10 , 10 2 } .

4. Results 

The detailed classification results on ADNI-1 dataset are sum-

marized in Table 3 . Fig. 3 plots the ROC curves of all the meth-

ods. Specifically, the accuracy values of our proposed methods

for AD versus NC, MCI versus NC, and MCI-C versus MCI-NC are

97.60%, 84.47% and 77.76%, respectively on the ADNI-1 dataset. Cor-

respondingly, the AUC values of our proposed method are 0.98,

0.86 and 0.71 respectively. 

We have treated the ADNI-2 as a larger independent dataset

and validated our proposed method on it. The classification results

on the ADNI-2 dataset are summarized in Table 4 . Fig. 4 plots the

ROC curves of all the methods. Specifically, the accuracy values of

our proposed methods for AD versus NC, MCI versus NC, and MCI-

C versus MCI-NC are 93.72%, 78.47% and 73.87%, respectively on

the ADNI-2 dataset. Correspondingly, the AUC values of our pro-

posed method are 0.95, 0.78 and 0.7, respectively. In addition, we

have made a competing test that our proposed approach can also
Fig. 3. The ROC curves of all comparison methods on ADNI-1: (a) the classification of 

MCI-NC. The horizontal axis represents the false positive rate; the vertical axis represen

power. 
chieve better performances no matter what processing framework

nd template parcellation have been applied to dataset. 

Besides MFCC-MK-SVM, we also adopt other different classi-

ers: random forest (RF) and K nearest neighbor (KNN) algorithm.

he experimental results for the different classifiers in the ADNI-1

ata set are presented in Table 5 . The experimental results for the

ifferent classifiers in the ADNI-2 dataset are presented in Table 6 .

e use random forest as the classifier, and the number of trees in

he random forest is set to 10 0 0, and the number of features se-
AD vs. NC, (b) the classification of NC vs. MCI, (c) the classification of MCI-C vs. 

ts the true positive rate. The area under the curve (AUC) indicates the diagnosis 



X. Hao, Y. Bao and Y. Guo et al. / Medical Image Analysis 60 (2020) 101625 7 

Fig. 4. The ROC curves of all comparison methods on ADNI-2: (a) the classification of AD vs. NC, (b) the classification of LMCI vs. NC, (c) the classification of EMCI vs. LMCI. 

The horizontal axis represents the false positive rate; the vertical axis represents the true positive rate. The area under the curve (AUC) indicates the diagnosis power. 

Table 4 

Classification performance of different methods on ADNI-2. 

(a) AD versus NC 

Method ACC SEN SPE AUC P -value 

Baseline-SVM 91.13 ± 5.04 92.37 89.50 0.95 < 0.001 

LASSO-SVM 85.90 ± 5.51 89.34 81.38 0.92 < 0.001 

t -test-SVM 79.60 ± 6.93 84.31 73.38 0.86 < 0.001 

Baseline-MK-SVM 91.72 ± 4.15 93.36 89.56 0.94 0.006 

LASSO-MK-SVM 86.82 ± 4.57 89.57 82.66 0.90 < 0.001 

t -test-MK-SVM 90.06 ± 4.35 92.75 86.50 0.93 < 0.001 

Group Lasso-MK-SVM 89.92 ± 4.42 93.65 85.00 0.93 < 0.001 

Euclid-MK-SVM 91.72 ± 4.15 93.36 89.56 0.94 0.006 

Hypergraph-MK-SVM 91.19 ± 4.12 94.17 87.25 0.94 < 0.001 

MFCC-MK-SVM 93.72 ± 3.38 95.17 91.81 0.95 –

(b) LMCI versus NC 

Method ACC SEN SPE AUC P -value 

Baseline-SVM 69.23 ± 7.25 74.46 63.37 0.74 < 0.001 

LASSO-SVM 66.61 ± 6.60 71.66 60.96 0.71 < 0.001 

t -test-SVM 62.81 ± 6.12 70.38 54.28 0.65 < 0.001 

Baseline-MK-SVM 74.35 ± 5.99 81.42 66.42 0.77 < 0.001 

LASSO-MK-SVM 71.46 ± 6.00 76.86 62.72 0.71 < 0.001 

t -test-MK-SVM 73.00 ± 5.76 81.52 63.42 0.75 < 0.001 

Group Lasso-MK-SVM 74.35 ± 6.15 81.42 66.42 0.77 < 0.001 

Euclid-MK-SVM 74.35 ± 5.99 81.42 66.42 0.77 < 0.001 

Hypergraph-MK-SVM 75.32 ± 5.79 85.07 64.39 0.75 < 0.001 

MFCC-MK-SVM 78.47 ± 5.61 85.88 70.16 0.78 –

(c) EMCI versus LMCI 

Method ACC SEN SPE AUC P -value 

Baseline-SVM 64.08 ± 6.79 76.48 45.99 0.66 < 0.001 

LASSO-SVM 63.55 ± 7.13 78.32 42.03 0.66 < 0.001 

t -test-SVM 63.32 ± 5.35 87.33 28.29 0.64 < 0.001 

Baseline-MK-SVM 70.01 ± 5.52 85.20 47.86 0.68 < 0.001 

LASSO-MK-SVM 68.43 ± 4.83 88.92 37.31 0.66 < 0.001 

t -test-MK-SVM 69.10 ± 5.25 85.05 45.83 0.66 < 0.001 

Group Lasso-MK-SVM 70.22 ± 4.40 90.62 40.43 0.68 < 0.001 

Euclid-MK-SVM 70.01 ± 5.52 85.20 47.86 0.68 < 0.001 

Hypergraph-MK-SVM 71.45 ± 4.43 90.95 42.99 0.68 0.001 

MFCC-MK-SVM 73.87 ± 4.77 90.55 49.52 0.70 –

l  
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Table 5 

Comparison of different classifiers experimental results on ADNI-1

Method AD versus NC MCI versus NC

ACC SEN SPE AUC ACC SEN 

RF 93.82 86.47 72.12 0.90 79.16 90.9

KNN 95.54 82.35 73.85 0.81 82.40 85.9

MK-SVM 97.60 98.43 96.73 0.98 84.47 94.0
ected in the RF is 
√ 

d . In the KNN algorithm, we set the parameter

 to 5. The experimental results show that the classifier MK-SVM

an achieve better performances. 

In summary, the accuracy of our proposed method is always

uperior to that of other methods in the above cases, indicating

hat our method has better diagnostic performances. In addition, in

ost cases, the proposed method achieves higher sensitivity than

ther methods. It is worth noting that in our experiment, there is a

ignificant difference between sensitivity and specificity. For exam-

le, each method has relatively high sensitivity but low specificity.

n medical diagnosis, it is different to misjudge a patient as nor-

al or to misjudge a normal sample as a patient. Obviously, the

ormer is costly and may delay the treatment. Therefore, high sen-

itivity is very important for disease diagnosis and beneficial for

edical diagnosis. 

. Discussion 

The aim of this paper is to develop a novel method for address-

ng two issues, including (1) selecting brain ROIs related to AD and

2) classification and diagnosis of AD. All experiments have been

arried out on the ADNI-1 and ADNI-2 datasets to demonstrate

he effectiveness of the proposed method MFCC. The results show

hat this method can not only classify AD using complementary

nformation from multimodal imaging data, but also help discover

isease-related biomarkers and understand the pathological mech-

nism of AD. In the following sections, we will first discuss issues

elated to construction of random forest, similarity and consistency

easurement, multi-modal neuroimaging analysis, parameter set- 

ings, and clinical implications. After that, we will discuss strengths

f the proposed method in comparison with competing methods as

ell as possible limitations warranting further investigation. 

.1. Construction of random forest 

In this paper, the similarity matrix of each modality is con-

tructed by random forest method. Specifically, this experiment

ets the parameters of the random forest as the default values
. 

 MCI-C versus MCI-NC 

SPE AUC ACC SEN SPE AUC 

1 26.15 0.71 70.72 56.05 54.29 0.59 

6 29.62 0.53 75.04 54.42 49.11 0.60 

4 66.15 0.81 77.76 67.44 85.54 0.76 
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Table 6 

Comparison of different classifiers experimental results on ADNI-2. 

Method AD versus NC LMCI versus NC EMCI versus LMCI 

ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC 

RF 87.03 84.60 67.06 0.82 71.44 72.94 45.72 0.60 69.11 81.87 29.36 0.58 

KNN 84.37 82.23 65.31 0.77 69.81 64.69 47.65 0.55 69.14 69.49 39.48 0.55 

MK-SVM 93.72 95.17 91.81 0.95 78.47 85.88 70.16 0.78 73.87 90.55 49.52 0.70 

Fig. 5. The classification results on the different number of features in the random 

forest. The horizontal axis represents the number of features; the vertical axis rep- 

resents the classification accuracy for AD diagnosis. 
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(the number of trees is 10 0 0, and the number of features is 
√ 

d ).

Now we discuss the influence of the number of features in ran-

dom forests in the experimental results. The results are shown

in Fig. 5 , where the number of features varies in the range of

{ 1 , 
√ 

d 
2 , 

√ 

d 
1 . 5 , 

√ 

d , 
√ 

d ∗ 2 , 
√ 

d ∗ 3 , 
√ 

d ∗ 4 , d } . As can be seen from Fig.

5 , when the number of features is set to be 
√ 

d , the experimental

results are optimal. However, when the number of features is set

to be 
√ 

d ∗ 2 , the accuracy will rapidly decline. The fundamental

reason may be that when there are too many features, redundant

features will affect the steady of the similarity, that is, the similar-

ity matrix calculated by random forest may not be able to describe

the global relationship between samples. 

5.2. Similarity metrics learning 

Other methods are compared to sample similarity measured

by random forests. Specifically, the simple graph describes the

relationship between pairs of samples, and the hypergraph de-

scribes the high-order and multi-relationships between samples.

The above two methods can only capture the local relationship be-

tween samples, but cannot fully utilize the information provided

by the structural data, resulting in the loss of global information. 

Sample similarity metrics learning via random forest has been

used in a variety of applications, such as disease classification and

image segmentation ( Mitra et al., 2014 ). In addition, some recent

studies have incorporated the computational similarity methods

into medical imaging analysis ( Zimmer et al., 2017 ). Tong et al.

(2017 ) proposed a multi-modal nonlinear graph fusion method.
hey used four modal data points to create four maps using the

imilarity of random forests, and then used a nonlinear approach

o fuse and reclassify the four maps. However, they did not con-

ider the inherent information of different data modalities. 

In contrast, our proposed multi-modal neuroimaging feature

election model with the consistent metric constraint not only

tilizes the global relationship between samples, but also makes

ull use of the supplementary information provided by different

odalities. The experimental results have achieved higher classi-

cation accuracy and AUC, which have demonstrated the effective-

ess of our proposed method. 

.3. Multi-modal neuroimaging analysis 

Recent studies on the diagnosis of AD have shown that different

mage modalities can provide complementary information to help

dentify AD ( Sui et al., 2012 ; Tong et al., 2017 ). It has been reported

hat the fusion of multiple modalities can improve diagnostic per-

ormance. A number of different approaches have been proposed

o fuse biomarkers of different modalities to produce more power-

ul classifiers ( Gray et al., 2013 ; Zhang et al., 2011 ). The easiest way

o combine multi-modal data is to concatenate the features ob-

ained from the different modalities into the row vectors for each

ample. For example, Walhovd et al. (2010 ) took the feature vectors

s simple connection processing. Gray et al. (2013 ) used multiple

andom forest classifiers to fuse multi-modal data for classification

f AD. In addition, the multi-modal classification method of voting

ith multiple classifiers is a common ensemble learning strategy,

ut may introduce bias due to the use of multimodality. An effec-

ive way to fuse different modalities is based on kernel methods

uch as multi-kernel learning ( Zhang et al., 2011 ). A single kernel

atrix is calculated for each modality, and a final kernel matrix is

btained by their linear combination. Several results show that the

atter can achieve better performance than the former. 

In order to evaluate the validity of multi-modal data classifica-

ion, we performed experiments and compared them with multi-

odal and single modal data. We use the proposed classification

ramework to compare the results of single modal and multi-modal

xperiments on the ADNI-1 and ADNI-2 datasets. The correspond-

ng results are shown in Tables 7 and 8 . As we have seen, the pro-

osed method with two modalities has better performance than

he single modality. The results further indicate that multi-modal

ata contain supplemental information and can achieve better clas-

ification performance than a single modality. 

The pathological changes from the same ROIs might be ex-

mined through structural and functional radiologic imaging, si-

ultaneously. Thus performing ROI feature selections across mul-

imodalities is very helpful to suppress noises in the individual

odality features ( Hao et al., 2016 ; Li et al., 2019 ; Sarter et al.,

996 ). 

The structural and functional features with great heterogeneity

an provide essential complementary information for brain disease

nalysis and diagnosis from the aspect of feature fusion in ensem-

le learning community. Here, the different measurements from

he same ROIs just express the structural and functional changes,

hich has the characteristics of heterogeneity. The experiment re-
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Table 7 

Comparison of single model and multi-modal experimental results on ADNI-1. 

Method AD versus NC MCI versus NC MCI-C versus MCI-NC 

ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC 

VBM-MRI 92.38 81.18 90.58 0.92 81.35 80.30 56.54 0.77 72.94 40.93 68.04 0.51 

FDG-PET 92.66 87.65 84.04 0.93 79.70 82.22 46.92 0.69 72.34 33.72 68.75 0.54 

multi-modal 97.60 98.43 96.73 0.98 84.47 94.04 66.15 0.81 77.76 67.44 85.54 0.76 

Table 8 

Comparison of single model and multi-modal experimental results on ADNI-2. 

Method AD versus NC LMCI versus NC EMCI versus LMCI 

ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC 

VBM-MRI 86.63 90.28 81.81 0.93 71.20 78.01 63.32 0.76 63.18 83.70 32.62 0.64 

FDG-PET 80.06 86.02 71.94 0.85 66.77 75.45 55.94 0.68 64.69 78.17 44.44 0.63 

multi-modal 93.72 95.17 91.81 0.95 78.47 85.88 70.16 0.78 73.87 90.55 49.52 0.70 
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ults have showed the joint feature selection from the same ROIs

an achieve higher performances, which has further demonstrated

he effectiveness of ‘consistency’. 

.4. Parameter settings 

In the objective function of our proposed model, there are

hree regularization parameters (i.e., λ, σ 1 , σ 2 ) that need to be

et. They balance the relative contribution of the group sparsity

egularization term and the two-sample consistency metric regu-

arization terms. In this section, we study the effect of regular-

zation parameters on classification performance. Specifically, we

rst fix the value of λ to 0.01 and change σ 1 and σ 2 in the

ange of { 10 −9 
, 10 −8 

, . . . , 10 2 } . Then we fix σ 1 to 0.01 and change

and σ 2 in the range of { 10 −9 
, 10 −8 

, . . . , 10 2 } . Finally, we fixed

he value of σ 2 to 0.01 and changed λ and σ 1 in the range of

 10 −9 
, 10 −8 

, . . . , 10 2 } . The corresponding test results on ADNI-1 and

DNI-2 datasets are shown in Fig. 6 and Fig. 7 , respectively. We

an see that the proposed method slightly fluctuates when chang-

ng the parameter λ, σ 1 , σ 2 , indicating that our proposed method

s not particularly sensitive to parameter values. 

.5. Clinical implications 

It is important to detect the risk ROIs associated with brain

isease. We count the top 10 most frequently selected regions in

he AD and NC classifications as the most discriminative mark-

rs. The top 10 regions in the ADNI-1 dataset are Middle Tempo-

al Gyrus Right, Lateral Occipitotemporal Gyrus Left, Hippocampal For-

ation Left, Supramarginal Gyrus Right, Precentral Gyrus Left, Amyg-
ig. 6. Accuracy of AD vs. NC classification with respect to different parameter values in 

n the range of { 10 −9 
, 10 −8 

, . . . , 10 2 } .The X -axis and Y -axis represent the diverse value of p
ala Right, Angular Gyrus Left, Angular Gyrus Right, Precuneus Left,

nferior Temporal Gyrus Right . The top 10 regions in the ADNI-2

ataset are Frontal Sup Medial Left, Precuneus Left, Amygdala Right,

uneus Left, ParaHippocampal Left, Frontal Mid Orb Left, Cingulum

id Left, Rectus Left, Cingulum Post Left, Hippocampus Left . As can

e seen from Figs. 8 and 9 , most selected ROIs, such as Hippocam-

us and Amygdala detected simultaneously from different tem-

late are consistent with previous studies. According to the reports,

he fact that Medial Temporal Lobe structures, including the Hip-

ocampus , are critical for declarative memory is firmly established

 Tulving and Markowitsch, 1998 ). Emotionally significant experi-

nces tend to be well remembered, and the Amygdala has a piv-

tal role in this process ( Roozendaal et al., 2009 ). Thus, these evi-

ences suggest that the Limbic System (including Hippocampus and

mygdala ) ( Hopper and Vogel, 1976 ) should be concerned in AD

esearch. 

.6. Comparison with previous studies 

The MFCC algorithm proposed in this paper is compared with

he ten state-of-the-art competing AD classification algorithms us-

ng multi-modal data, including the traditional machine learning

ethods and the deep learning methods, as shown in Table 9 .

n order to show the effectiveness of our proposed method and

he confidence of the results, we set the same experiment dataset

nd processing framework following the previous works ( Jie et al.,

015 ; Li et al., 2015 ; Shi et al., 2018 ; Suk et al., 2016 ; Suk and

hen, 2013 ; Zhang et al., 2011 ) Accordingly, the ADNI-1 dataset

nd processing framework (including template parcellation) used

n this paper are the same as those used in the literature. 
ADNI-1 dataset. We fix one parameter to 0.01 respectively and vary the other two 

arameters and the Z -axis represents the classification accuracy for AD diagnosis. 
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Fig. 7. Accuracy of AD vs. NC classification with respect to different parameter values in ADNI-2 dataset. We fix one parameter to 0.01 respectively and vary the other two 

in the range of { 10 −9 
, 10 −8 

, . . . , 10 2 } .The X- axis and Y -axis represent the diverse value of parameters and the Z-axis represents the classification accuracy for AD diagnosis. 

Fig. 8. Brain regions associated with AD using a 3D atlas Jacob ( Kabani et al., 1998 ) (ADNI-1) 

Table 9 

Comparison of the performance of different multi-modal classification algorithms. 

Algorithms Subjects Modalities AD vs NC MCI vs NC MCI-C vs MCI-NC Algorithm description 

MKL ( Zhang et al., 2011 ) 51AD, 43MCI-C, 

56MCI-NC, 52NC 

MRI + PET + CSF 93.20 76.40 – The classical multi-kernel learning (MKL) 

based algorithm 

MTL ( Jie et al., 2015 ) 51AD, 43MCI-C, 

56MCI-NC, 52NC 

MRI + PET + CSF 95.03 79.27 68.94 The multi-task learning (MTL) based 

algorithm 

M-RBM ( Suk et al., 2014 ) 93AD, 76MCI-C, 128 

MCI-NC, 101 NC 

MRI + PET 95.35 85.67 75.92 The pioneering multi-modal deep RBM 

(M-RBM) based feature learning 

algorithms 

SAE ( Liu et al., 2015b ) 85AD, 67MCI-C, 102 

MCI-NC, 77 NC 

MRI + PET 91.35 90.42 – The SAE-based multi-modal neuroimaging 

feature learning algorithm 

SAE-MKL (Suk, 2013) 51AD, 43MCI-C, 

56MCI-NC, 52NC 

MRI + PET + CSF 98.80 90.70 83.30 The combination of SAE-based feature 

learning and MKL classification (SAE-MKL) 

algorithm 

DW-S2MTL ( Suk et al., 2016 ) 51AD, 43MCI-C, 

56MCI-NC, 52NC 

MRI + PET + CSF 95.09 78.77 73.04 The deep sparse multi-task learning based 

feature selection (DW-S2MTL) algorithm 

Dropout-DL ( Li et al., 2015 ) 51AD, 43MCI-C, 

56MCI-NC, 52NC 

MRI + PET + CSF 91.40 77.40 70.10 The dropout based robust multi-task deep 

learning (Dropout-DL) algorithm 

SDSAE ( Shi et al., 2017 ) 94AD, 121MCI, 123NC Longitudinal MRI 91.95 83.72 – The SDSAE-based feature learning 

algorithm 

NGF ( Tong et al., 2017 ) 37AD, 75MCI, 35NC MRI + PET + CSF + 
Genetics 

98.10 82.40 77.90 The nonlinear graph fusion (NGF) based 

algorithm 

MM-SDPN-SVM ( Shi et al., 

2018 ) 

51AD, 43MCI-C, 

56MCI-NC, 52NC 

MRI + PET 97.13 87.24 78.88 The multi-modal stacked deep polynomial 

networks and SVM 
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Fig. 9. Brain regions associated with AD using AAL template ( Ashburner and Friston, 20 0 0 ) (ADNI-2) 
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It is worth noting that the proposed method has performed

etter than at least one of the deep learning methods in this

omparison. In particular, the accuracy is higher than that of the

eep learning methods in AD versus NC classification when us-

ng only two imaging modality (i.e., MRI and PET). One essen-

ial reason may be that our proposed method is able to fully uti-

ize the global structure information from the data. As the ob-

ective function is induced the similarity constraint between dif-

erent samples, the selected features are more informative and

iscriminative in this optimization problem. While several exist-

ng deep learning models in literature haven’t incorporated the

ufficient prior information yet. Furthermore, when the number

f train samples is highly limited, the capacity of deep feature

epresentations may be weaker than that of original hand-draft

eatures from candidate pathogenic brain regions. Accordingly, in

his study, it is more effective to design a simple but well-

efined feature selection model with to address the issue of AD

lassification. 

. Limitations 

Despite its promising performance, the proposed method still

as a few. First, our proposed method utilizes two types of neu-

oimaging biomarkers (i.e., MRI and PET) from the ADNI dataset.

ctually, in the ADNI dataset, many subjects also have other type

f biomarkers, such as CSF, plasma, genetics data, and so on. In the

uture, we will examine whether adding more modal can further

mprove performance. 

Secondly, we only studied the two-category problem and did

ot test the performance on the multi-class problem. It is valuable

o accurately diagnose patients at a certain stage of the disease.

n addition, we did not take advantage of quantitative outcomes

n the ADNI dataset, such as MMSE and other cognitive scores.

t could be interesting to integrate more complicated relationship

earning in a multi-task learning framework rather than a single

odel for feature selection. 
Actually, it is quite different to determine which template

hould be selected as the best one from multiple diverse tem-

lates. Due to potential bias associated with the use of a single

emplate, the feature representations generated from a single tem-

late may not be sufficient enough to reveal the underlying com-

lex differences between groups of patients and normal controls.

ecently, some researchers have proposed several methods that

an take advantage of multiple diverse templates to compare group

ifferences more efficiently ( Huang et al., 2019 ; Koikkalainen et al.,

011 ; Liu et al., 2016a ; Liu et al., 2015a ). The future research direc-

ion is to further investigate how to make use of the multiple di-

erse templates and detect features from highly consistent regions

or exploring some biologically meaningful results. 

Finally, since we currently only focus on the ROI features, it is

elpful to integrate the non-handcrafted features using deep learn-

ng techniques as well. Another interesting future direction is to

nvestigate both visual and represented features to facilitate the di-

gnosis and prognosis for the clinical applications. 

. Conclusion 

In summary, this paper presents a novel feature selection

ethod with consistent metric constraint for the diagnosis of AD.

his method is used to combine complementary information pro-

ided by multi-modal neuroimaging data for feature selection and

urther classification. Specifically, we devise regularization terms

hat consider structure information such as feature association and

ample similarity inherent in this analysis framework. In our ex-

ensive experiments on ADNI datasets, we demonstrate the effec-

iveness of the proposed method by comparing it with the state-

f-the-art methods. We believe this work will further motivate the

xploration of multi-modal models that would improve the predic-

ions in AD. 
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